Abstract
Equilibrium and nonequilibrium molecular dynamics simulation techniques were used to assess the influence of an applied microwave field on the dynamics of methylamine-methanol and methylamine-dimethylformamide (DMF) solutions bound within atactic polystyrene over a range of polymer densities from 35 to 96 wt % polymer. Atomistically detailed systems were studied, ranging from 3000 to 10 644 particles, using previously established potential models. Structural and dynamical properties were determined in the canonical (NVT) ensemble at 298 K. The simulated DMF self-diffusion coefficients in polystyrene solutions were compared with the zero-field experimental results established with pulsed-gradient spin-echo NMR spectrometry. A simulated external microwave field, with a rms electric field intensity of 0.1 V/Å, was applied to these systems and the simulated dynamical results over field frequencies up to 104 GHz were compared with the zero-field values. Simulated evidence of athermal effects on the diffusive characteristics of these mixtures is reported.
Recommended Citation
M. J. Purdue et al., "Molecular Dynamics of Polystyrene Solutions in Microwave Fields," Journal of Chemical Physics, American Institute of Physics (AIP), May 2006.
The definitive version is available at https://doi.org/10.1063/1.2197496
Department(s)
Chemistry
Sponsor(s)
Enterprise Ireland
Keywords and Phrases
Molecular Dynamics; Polystyrene Solutions; Atactic Polystyrene; Methylamine-Dimethylformamide (DMF); Methylamine-Methanol; Pulsed-Gradient Spin-Echo NMR Spectrometry
International Standard Serial Number (ISSN)
0021-9606
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 American Institute of Physics (AIP), All rights reserved.
Publication Date
22 May 2006