Evaluation of Dysprosia Aerogels as Drug Delivery Systems: A Comparative Study with Random and Ordered Mesoporous Silicas

Abstract

Biocompatible dysprosia aerogels were synthesized from DyCl 3·6H2O and were reinforced mechanically with a conformal nano-thin-polyurea coating applied over their skeletal framework. the random mesoporous space of dysprosia aerogels was filled up to about 30% v/v with paracetamol, indomethacin, or insulin, and the drug release rate was monitored spectrophotometrically in phosphate buffer (pH = 7.4) or 0.1 M aqueous HCl. the drug uptake and release study was conducted comparatively with polyurea-crosslinked random silica aerogels, as well as with as-prepared (native) and polyurea-crosslinked mesoporous silica perforated with ordered 7 nm tubes in hexagonal packing. Drug uptake from random nanostructures (silica or dysprosia) was higher (30-35% w/w) and the release rate was slower (typically >20 h) relative to ordered silica (19-21% w/w, <1.5 h, respectively). Drug release data from dysprosia aerogels were fitted with a flux equation consisting of three additive terms that correspond to drug stored successively in three hierarchical pore sites on the skeletal framework. the high drug uptake and slow release from dysprosia aerogels, in combination with their low toxicity, strong paramagnetism, and the possibility for neutron activation render those materials attractive multifunctional vehicles for site-specific drug delivery.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

1944-8244

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 American Chemical Society (ACS), All rights reserved.

Publication Date

01 Jan 2014

Share

 
COinS