Thermodynamic Properties of Nitrogen Molecules at High Temperatures

Abstract

Calculations of the second virial coefficients and their derivatives for the Hulburt-Hirschfelder (HH) and other accurate interaction potentials are used to determine the thermodynamic properties of nitrogen at high temperatures. Unlike the usual methods employing partition functions, which are most accurate at low temperatures where the energy levels are precisely known, the virial coefficient method depends on integrating over potential energy functions which provide a useful description of energies even near the top of the potential well, a region where the vibrational-rotational energy levels are not readily accessible. This makes this method particularly useful for predicting high-temperature properties outside the range of laboratory measurements and beyond the useful limits of the partition function approach. In the present work, we use the virial coefficient method to predict the heat capacities and enthalpies of nitrogen up to 25,000 K. © 1990 Plenum Publishing Corporation.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

0195-928X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1990 Springer Verlag, All rights reserved.

Publication Date

01 Jan 1990

Share

 
COinS