In Vitro Enzymatic Stability of Dendritic Peptides
Abstract
PEGylated polyamidoamine (PAMAM) dendrimers as drug carriers have been a topic of interest because of their biomedically favorable features, including minimal toxicity, reduced immunogenicity, and excellent solubility in aqueous and most organic solutions. A PEG shell on dendrimer surface may provide steric hindrance, known as stealth properties of PEG, to stabilize drug molecules to be delivered. In this article, the effects of PEG and coupling sequence of drug, PEG, and dendrimer in modulating the stability of delivered drug molecules were evaluated. N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide was chosen as a model peptide. Dendritic peptides, that is, peptide-dendrimer, peptide-P AMAM-PEG, and peptide-PEG-dendrimer, were constructed based on Starburst™ G3.0 PAMAM dendrimer and characterized by 1H-NMR spectroscopy. Hydrolysis of dendritic peptides was catalyzed by α-chymotrypsin in pH 7.4 PBS buffer containing 5% DMF (v/v) at room temperature. The enzymatic stability of dendritic peptides was peptide-PAMAM-PEG ⟩ peptide-PAMAM ⟩ free peptide ⟩ peptide-PEG-PAMAM. The ratio of PEG/peptide could be reduced for increasing peptide loading while maintaining the delivered peptides' relatively high enzymatic stability. The quantitative analysis of dendritic peptide/enzyme interactions provided the understandings of the molecular structure/stability relationships of dendrimer/drug for the design of an optimal PEGylated dendrimer-based drug-delivery system.
Recommended Citation
H. Yang and S. T. Lopina, "In Vitro Enzymatic Stability of Dendritic Peptides," Journal of Biomedical Materials Research - Part A, vol. 76, no. 2, pp. 398 - 407, Wiley Periodicals, Inc., Feb 2006.
The definitive version is available at https://doi.org/10.1002/jbm.a.30529
Department(s)
Chemical and Biochemical Engineering
Keywords and Phrases
Enzyme activity inhibition; Michaelis-Menten equation; Nanomedicine; PEG-PAMAM star polymer; Peptide delivery
International Standard Serial Number (ISSN)
0021-9304; 1097-4636
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2006 Wiley Periodicals, Inc., All rights reserved.
Publication Date
01 Feb 2006
PubMed ID
16270346