Abstract
Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein- labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.
Recommended Citation
C. A. Holden et al., "Surface Engineering of Macrophages with Nanoparticles to Generate a Cell-Nanoparticle Hybrid Vehicle for Hypoxia-Targeted Drug Delivery," International Journal of Nanomedicine, vol. 5, no. 1, pp. 25 - 36, Dove Medical Press, Feb 2010.
Department(s)
Chemical and Biochemical Engineering
Keywords and Phrases
Anticancer drug; Cellular vehicle; Confocal microscopy; Dendrimer; Drug delivery; Hypoxia; Nanotechnology
International Standard Serial Number (ISSN)
1176-9114; 1178-2013
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2010 Holden et al., All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
Publication Date
01 Feb 2010
PubMed ID
20161985