Enhanced Battery Performance through Three-Dimensional Structured Electrodes: Experimental and Modeling Study
Abstract
Three-dimensional (3D) electrode structures have the potential to significantly improve Li-ion battery performance, including power and energy density. Due to the complexity of geometries caused by scale expansion, however, a more precise understanding of the relationship between battery physics and structures is required. In this work, a novel hybrid 3D structure is investigated to thoroughly understand the advantages of 3D structured electrodes and to provide a guideline for design optimization. Experimental observation from an extrusion-based 3D structure is incorporated into a 3D electrochemical model, based on porous theory, with a 4th order approximation for solid phase concentration. This systematic study has been focused on the impact of electrode tap density (thickness and volume fractions) on 3D battery performance. Experimental and simulation results showed that the proposed 3D hybrid structure exhibited higher specific capacity and areal capacity than conventional electrode structures. This was found to be due to the short diffusion path and uniformly distributed concentration within the electrodes, even with thicker electrodes. Parametric metrics were introduced to provide a physical insight into the 3D hybrid structure, to identify the factors limiting battery responses, and to, eventually, provide a guideline for design optimization with more general 3D geometries.
Recommended Citation
J. Li et al., "Enhanced Battery Performance through Three-Dimensional Structured Electrodes: Experimental and Modeling Study," Journal of The Electrochemical Society, vol. 165, no. 14, ECS, Nov 2018.
The definitive version is available at https://doi.org/10.1149/2.1351814jes
Department(s)
Chemical and Biochemical Engineering
Second Department
Mechanical and Aerospace Engineering
Research Center/Lab(s)
Intelligent Systems Center
Second Research Center/Lab
Center for High Performance Computing Research
Keywords and Phrases
Batteries; Batteries – Lithium; Energy Storage; 3D Battery; Additive Manufacturing; Thick Electrode
International Standard Serial Number (ISSN)
0013-4651; 1945-7111
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 The Authors, All rights reserved.
Publication Date
01 Nov 2018
Comments
The authors gratefully acknowledge the financial support from National Science Foundation Awards (CMMI-1563029/1747608, CBET-1510085).