Catalyst Effectiveness Factors under Gas-To-Liquid Mass Transfer Limiting Regime in Liquid Phase Methanol Synthesis Process
Abstract
The effectiveness factors of methanol synthesis catalyst were experimentally measured under condition of gas-to-liquid mass transfer limiting regime in the liquid phase methanol synthesis process, where the synthesis catalyst is slurried in an inert liquid phase. The experimental measurements of effectiveness factors were based on an intrinsic methanol synthesis rate per unit mass of catalyst (gmol/kg cat.h) which is not limited by external mass transfer. The experiments were carried out under well-defined conditions of temperature, pressure, syngas feed flow rate, and impeller speed. The experiments were carried out in a 1-L stirred autoclave. The catalyst slurry ratios were varied from 10 g in 550 mL of Witco-40 oil (corresponding to a slurry ratio of 2.2%) to 150 g in 550 mLof Witco-40 oil (corresponding to a slurry ratio of 25.1%). The experimental measurements have been summarized in one single plot as generalized catalyst effectiveness factor as a function of catalyst slurry ratio. The results of this study are extremely significant and practical in their applicability because the data were obtained using commercial methanol catalysts under actual commercial operating conditions of liquid phase methanol synthesis process.
Recommended Citation
M. R. Gogate and S. Lee, "Catalyst Effectiveness Factors under Gas-To-Liquid Mass Transfer Limiting Regime in Liquid Phase Methanol Synthesis Process," Fuel Science and Technology International, Taylor & Francis, Jan 1994.
The definitive version is available at https://doi.org/10.1080/08843759408916164
Department(s)
Chemical and Biochemical Engineering
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1994 Taylor & Francis, All rights reserved.
Publication Date
01 Jan 1994