Transient Receptor Potential Ion Channel-Dependent Toxicity Of Silica Nanoparticles And Poly(amido Amine) Dendrimers

Abstract

Fundamental to the design and development of nanoparticles for applications in nanomedicine is a detailed understanding of their biologic fate and potential toxic effects. Transient receptor potential (TRP) ion channels are a large superfamily of cation channels with varied physiologic functions. This superfamily is classified into six related subfamilies: TRP canonical, TRP vanilloid (TRPV), TRP melastatin (TRPM), TRP ankyrin (TRPA), TRP polycystin, and TRP mucolipin. TRPA1, TRPM2, and TRPM8 are nonselective Ca21-permeable cation channels which regulate calcium pathways under oxidative stress, whereas TRPV4 can be activated by oxidative, osmotic, and thermal stress as well as different fatty acid metabolites. Using a series of well characterized silica nanoparticles with variations in size (approximately 50-350 nm in diameter) and porosity, as well as cationic and anionic poly(amido amine) (PAMAM) dendrimers of similar size, we examined the toxicity of these nanoparticles to human embryonic kidney-293 cells overexpressing different TRP channels. The data show that the toxicity of mesoporous silica nanoparticles was influenced by expression of the TRPA1 and TRPM2 channels, whereas the toxicity of smaller nonporous silica nanoparticles was only affected by TRPM8. Additionally, TRPA1 and TRPM2 played a role in the cytotoxicity of cationic dendrimers, but not anionic dendrimers. TRPV4 did not seem to play a significant role in silica nanoparticle or PAMAM toxicity.

Department(s)

Chemical and Biochemical Engineering

Comments

National Science Foundation, Grant R01ES017431

International Standard Serial Number (ISSN)

1521-0103; 0022-3565

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 American Society for Pharmacology and Experimental Therapeutics (ASPET), All rights reserved.

Publication Date

01 Jan 2019

PubMed ID

30442652

Share

 
COinS