Abstract
Integrin-mediated cell adhesion to the ECM regulates many physiological processes in part by controlling cell proliferation. It is well established that many normal cells require integrin-mediated adhesion to enter S phase of the cell cycle. Recent evidence indicates that integrins also regulate cytokinesis. Mechanical properties of the ECM can dictate entry into S phase; however, it is not known whether they also can affect the successful completion of cell division. To address this issue, we modulated substrate compliance using fibronectin-coated acrylamide-based hydrogels. Soft and hard substrates were generated with approximate elastic moduli of 1600 and 34,000 Pascals (Pa) respectively. Our results indicate that dermal fibroblasts successfully complete cytokinesis on hard substrates, whereas on soft substrates, a significant number fail and become binucleated. Cytokinesis failure occurs at a step following the formation of the intercellular bridge connecting presumptive daughter cells, suggesting a defect in abscission. Like dermal fibroblasts, mesenchymal stem cells require cell-matrix adhesion for successful cytokinesis. However, in contrast to dermal fibroblasts, they are able to complete cytokinesis on both hard and soft substrates. These results indicate that matrix stiffness regulates the successful completion of cytokinesis and does so in a cell-type specific manner. To our knowledge, our study is the first to demonstrate that matrix stiffness can affect cytokinesis. Understanding the cell-type specific contribution of matrix compliance to the regulation of cytokinesis will provide new insights important for development, as well as tissue homeostasis and regeneration.
Recommended Citation
S. Sambandamoorthy et al., "Matrix Compliance and the Regulation of Cytokinesis," Biology Open, vol. 4, no. 7, pp. 885 - 892, The Company of Biologists, Jul 2015.
The definitive version is available at https://doi.org/10.1242/bio.011825
Department(s)
Chemical and Biochemical Engineering
Publication Status
Open Access
Keywords and Phrases
Cytokinesis; Integrins; Matrix compliance
International Standard Serial Number (ISSN)
2046-6390
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2025 The Authors, All rights reserved.
Creative Commons Licensing

This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
15 Jul 2015

Comments
National Science Foundation, Grant 1105125