Abstract
Recently, flares have been considered as a major source of air pollution from the petroleum refining industry. The United Nations has instigated an international effort related to the management of flare emissions to reduce the global warming impact related to flaring. Eliminating or removing the need for gas flares is difficult because these devices are generally used as safety devices to allow the combustion of flammable gases in a controlled fashion which supports safe operation. However, reducing flaring is generally possible using well-designed, efficiently operated flare equipment. In general, flare performance can be enhanced following the API-521 methodology and using assist-media including air and steam to achieve smokeless operation. This present work will discuss flare emissions in the petroleum refining industry and a method to manage flare emissions. Moreover, this work will discuss flare combustion efficiency (CE) and destruction and removal efficiency (DRE) in terms of efficient flare operation. This work uses actual operating flare data, published previously, which will be used in this work together with the CFD Code C3d. This code, developed at the USDOE Sandia National Laboratory, is based on a standard LES methodology to conduct transient flare analysis and is used to simulate flare operation to estimate flame shape and emissions produced. In this work, a new air-assisted flare tip design which uses the Coanda effect to improve flare operation was analyzed. This new flare design reduces the emission rate and demonstrates the design's effectiveness. The analysis considers a flare 39″ high and 6″ diameter in the center of a 4m x 4m x 4m domain. Boundary conditions assume no cross wind and an ambient temperature of 300 K. The initial condition is a hydrostatic pressure profile across the computational domain. In the air-assist simulation, stoichiometric ratio will be a variable, and therefore, more than one case was considered.
Recommended Citation
A. A. Maaroof et al., "A New Air-Assisted Flare Tip Design for Managing Gas Flare Emissions (CFD Analysis)," Processes, vol. 12, no. 9, article no. 1834, MDPI, Sep 2024.
The definitive version is available at https://doi.org/10.3390/pr12091834
Department(s)
Chemical and Biochemical Engineering
Publication Status
Open Access
Keywords and Phrases
CE; CFD; DRE; gas flare; soot emissions
International Standard Serial Number (ISSN)
2227-9717
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Sep 2024