Abstract
There is a compelling need for the development of new sensory and neural prosthetic devices which are capable of more precise point stimulation. Current prosthetic devices suffer from the limitation of low spatial resolution due to the non-specific stimulation characteristics of electrical stimulation, i.e., the spread of electric fields generated. We present a visible light stimulation method for modulating the firing patterns of electrically excitable cells using surface plasmon resonance phenomena. In in-vitro studies using gold (Au) nanoparticle-coated nanoelectrodes, we show that this method (substrate coated with nanoparticles) has the potential for incorporating this new technology into neural stimulation prosthetics, such as cochlear implants for the deaf, with very high spatial resolution. Au nanoparticles (NPs) were coated on micropipettes using amino silane linkers; and these micropipettes were used for stimulating and inhibiting the action potential firing patterns of SH-SY5Y human neuroblastoma cells and neonatal cardiomyocytes. Our findings pave the way for development of biomedical implants and neural testing devices using nanoelectrodes capable of temporally and spatially precise excitation and inhibition of electrically excitable cellular activity.
Recommended Citation
P. Bazard et al., "Nanoparticle-Based Plasmonic Transduction for Modulation of Electrically Excitable Cells," Scientific Reports, vol. 7, no. 1, article no. 7803, Nature Research, Dec 2017.
The definitive version is available at https://doi.org/10.1038/s41598-017-08141-4
Department(s)
Chemical and Biochemical Engineering
Publication Status
Open Access
International Standard Serial Number (ISSN)
2045-2322
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Dec 2017
PubMed ID
28798342
Comments
National Institute on Aging, Grant P01AG009524