"Aryl Sulfonic Acid Catalysts: Effect of Pendant Group Structure on Act" by Hossein Abedsoltan and Maria R. Coleman
 

Abstract

A series of aryl sulfonic acids were tested as catalysts for acid hydrolysis occurring at the surface of poly(ethylene) terephthalate (PET) particles. Specifically, p-toluene sulfonic acid monohydrate (PTSA), 2-naphthalenesulfonic acid (2-NSA), and 1,5-naphthalenedisulfonic acid tetrahydrate (1,5-NDSA) were chosen to provide sulfonic acid active groups and varying hydrophobic functionality. The effect of catalyst concentration and reaction temperature on PET hydrolysis rate was studied. The aryl sulfonic acid catalysts exhibited much higher rates of PET hydrolysis than the mineral acid, H2SO4. At 150°C and 4 M catalyst, the time required to achieve more than 90% TPA yield was 3, 3, and 8 h, and 18 h for (PTSA), (2-NSA), (1,5-NDSA), and H2SO4, respectively. Ethyl acetate hydrolysis was performed as a model reaction to probe the activity of the catalysts in homogenous reactions to compare with the heterogenous hydrolysis reaction occurring at the PET surface. The higher catalytic activities for PET hydrolysis of the PTSA, 2-NSA, and 1,5-NDSA than H2SO4 was attributed to improved wetting by the reaction media and affinity of the aryl sulfonic acid catalysts for the PET surface.

Department(s)

Chemical and Biochemical Engineering

Publication Status

Open Access

Keywords and Phrases

catalysts; degradation; kinetics; polyesters; recycling; wetting

International Standard Serial Number (ISSN)

1097-4628; 0021-8995

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Wiley, All rights reserved.

Publication Date

15 Jul 2022

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 7
  • Usage
    • Downloads: 4
    • Abstract Views: 1
  • Captures
    • Readers: 11
see details

Share

 
COinS
 
 
 
BESbswy