Abstract
Expressions are developed and presented that could be used to determine the film mass transfer coefficient of a solute in electroosmotic flows. In contrast to pressure-driven flows at low Reynolds numbers where the film mass transfer coefficient is independent of the linear characteristic dimension of the channel for flow, in electroosmotically driven flows at low Reynolds numbers the film mass transfer coefficient is shown to be a function of the ratio R/λ, where R is the channel radius and λ is the Debye length. This result implies that for electroosmotically driven flows in a packed bed or porous monolith with channels for flow having similar geometry but different sizes, the film mass transfer coefficient would vary with the size of the interstitial channels for bulk flow while in pressure-driven flows the film mass transfer coefficient would be the same for all interstitial channels. From the expressions presented in this work, one can show that for the same volumetric flow rate the film mass transfer coefficient of electroosmotically driven flows is proportional to that for pressure-driven flows. (C) 2000 Academic Press.
Recommended Citation
A. I. Liapis and B. A. Grimes, "Film Mass Transfer Coefficient Expressions for Electroosmotic Flows," Journal of Colloid and Interface Science, vol. 229, no. 2, pp. 540 - 543, Elsevier, Sep 2000.
The definitive version is available at https://doi.org/10.1006/jcis.2000.7061
Department(s)
Chemical and Biochemical Engineering
Keywords and Phrases
Charged particles; Charged porous monolith; Electroosmotic flow; Film mass transfer coefficient; Microchannel devices; Packed bed
International Standard Serial Number (ISSN)
0021-9797
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Elsevier, All rights reserved.
Publication Date
15 Sep 2000
Comments
University of Missouri, Grant None