Abstract
A Model for the Dynamic Contact Angles and the Spreading Kinetics of Nematic Liquid Crystals on a Solid Surface is Presented for the First Time using the Continuum Theory of Liquid Crystals. the Equations of Motion for This System Are Integrated for a Wedge or a Drop that is Thin and Moves Slowly. the Dynamic Contact Angle is Found to Depend on the Capillary Number that Represents the Importance of Viscocapillarity and on the Elasticity Number that is the Ratio between the Elastic and Surface Forces. the Model Provides an Explanation for the Extra Volume Dependence that is Reported in Experiments, as Well as One Case of Recoil, and for the Observation that Very Small Drops Were Reported to Be Immobile. for the First Time, These Previous Experimental Observations Are Shown to Be Due to Elastic Effects.
Recommended Citation
P. Neogi et al., "Dynamic and Equilibrium Contribution of Nematic Order in Wetting and Contact Angles," Journal of Physical Chemistry B, vol. 127, no. 13, pp. 3071 - 3078, American Chemical Society, Apr 2023.
The definitive version is available at https://doi.org/10.1021/acs.jpcb.2c08552
Department(s)
Chemical and Biochemical Engineering
International Standard Serial Number (ISSN)
1520-5207; 1520-6106
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 American Chemical Society, All rights reserved.
Publication Date
06 Apr 2023
PubMed ID
36976521
Comments
Missouri University of Science and Technology, Grant None