Abstract

Radioactive Gas Tracer Measurements Conducted during Liquid-Phase Methanol Synthesis from Syngas in a Pilot-Scale Slurry Bubble Column at the Alternate Fuels Development Unit (AFDU), La Porte Have Been Compared with Simulations from Two Mechanistic Reactor Models - Single-Bubble Class Model (SBCM) and Two-Bubble Class Model (TBCM). the Model Parameters Are Estimated from an Independent Sub-Model Gas and Liquid Recirculation, and the Long-Time-Averaged Slip Velocity between the Gas and Liquid/slurry in the Column Center Can Be as High as 50-60 Cm/s Depending on the Operating Conditions. Comparison of Experimental Data with Simulation Results from the Two Models Indicates that Accurate Description of Interphase Gas-Liquid Mass Transfer is Crucial to the Reliable Prediction of Tracer Responses. Coupled with a Correct Description of Gas and Liquid Recirculation, the Models Presented Here Provides a Simple and Fundamentally based Methodology for Design and Scale-Up of Bubble Column Reactors. © 2001 Published by Elsevier Science Ltd.

Department(s)

Chemical and Biochemical Engineering

Comments

U.S. Department of Energy, Grant DE-FC-22-95 PC 95051

Keywords and Phrases

Gas-liquid recirculation; Mechanistic reactor modeling; Radioactive tracer studies; Slurry bubble column

International Standard Serial Number (ISSN)

0009-2509

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Elsevier, All rights reserved.

Publication Date

01 Feb 2001

Share

 
COinS