"The Processing, Mechanical Properties and Bioactivity of Zinc based Gl" by D. Boyd and Mark R. Towler
 

Abstract

The suitability of Glass Ionomer Cements (GICs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of a GIC and its absence is likely to hinder cement formation. However, zinc oxide, a bacteriocide, can act both as a network modifying oxide and an intermediate oxide in a similar fashion to alumina and so ternary systems based on zinc silicates often have extensive regions of glass formation. The purpose of this research was to produce novel GICs based on calcium zinc silicate glasses and to evaluate their rheological, mechanical and biocompatible properties with the ultimate objective of developing a new range of cements for skeletal applications. The work reported shows that GICs based on two different glasses, A and B (0.05CaO · 0.53ZnO · 0.42SiO2 and 0.14CaO · 0.29ZnO · 0.57SiO2, respectively), exhibited handling properties and flexural strengths comparable to conventional GICs. Upon immersion in simulated body fluid of a GIC based on glass B, an amorphous calcium phosphate layer nucleated on the surface of the cement indicating that these cements are bioactive in nature. © 2005 Springer Science + Business Media, Inc.

Department(s)

Chemical and Biochemical Engineering

Comments

Enterprise Ireland, Grant PC/2003/001

International Standard Serial Number (ISSN)

0957-4530

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Sep 2005

PubMed ID

16167113

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 83
  • Usage
    • Downloads: 28
  • Captures
    • Readers: 59
see details

Share

 
COinS
 
 
 
BESbswy