Abstract
Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO2) glasses and low molecular weight poly (acrylic acid) (PAA) have been shown to exhibit suitable compressive strength (65 MPa) and flexural strength (14 MPa) for orthopaedic luting applications. In this study, two such GPC formulations, alongside two commercial cements (Simplex ® P and Hydroset™) were examined. Fracture toughness and tensile bond strength to sintered hydroxyapatite and a biomedical titanium alloy were examined. Fracture toughness of the commercial Poly(methyl methacrylate) cement, Simplex® P, (3.02 MPa m1/2) was superior to that of the novel GPC (0.36 MPa m1/2) and the commercial calcium phosphate cement, Hydroset™, for which no significant fracture toughness was obtained. However, tensile bond strengths of the novel GPCs (0.38 MPa), after a prolonged period (30 days), were observed to be superior to commercial controls (Simplex™ P: 0.07 MPa, Hydroset™: 0.16 MPa). © 2009 Springer Science+Business Media, LLC.
Recommended Citation
O. Clarkin et al., "Comparison of Failure Mechanisms for Cements Used in Skeletal Luting Applications," Journal of Materials Science: Materials in Medicine, vol. 20, no. 8, pp. 1585 - 1594, Springer, Aug 2009.
The definitive version is available at https://doi.org/10.1007/s10856-009-3724-2
Department(s)
Chemical and Biochemical Engineering
International Standard Serial Number (ISSN)
0957-4530
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Aug 2009
PubMed ID
19283454
Included in
Biochemical and Biomolecular Engineering Commons, Biomedical Devices and Instrumentation Commons
Comments
University of Leeds, Grant /2005/327