"Fabrication of Spherical CaO-SrO-ZnO-SiO2 Particles by Sol-Gel Process" by Ill Yong Kim, Mark R. Towler et al.
 

Abstract

This study was concerned with the fabrication of ceramic CaO-SrO-ZnO-SiO2 spherical particles, which are novel candidates for the glass phase in glass polyalkenoate cements (GPCs). GPCs made from these glasses have potential as bone cements because, unlike conventional GPCs, they do not contain aluminum ions, which inhibit the calcification of hydroxyapatite in the body. The glass phase of GPCs require a controllable glass morphology and particle size distribution. Sol-gel processing can potentially be used to fabricate homogenous ceramic particles with controlled morphology. However, a thorough study on preparation conditions of spherical CaO-SrO-ZnO-SiO2 particles by sol-gel processing has, to date, not been reported. In this study, gels were prepared by hydrolysis and polycondensation of tetraethoxysilane (TEOS) in an aqueous solution containing polyethylene glycol and nitrates of calcium, strontium and zinc. It was possible to control the morphology and size of the gels by varying the H2O/TEOS molar ratio and the metal ion content in the starting compositions. An aliquot of 3-5 μm homogenous spherical particles were obtained at a H2O/TEOS molar ratio of 42.6 when the starting composition molar ratios were Sr(NO 3):Ca(NO3)2:Zn(NO3) 2:Si(OC2H5)4 = x:0.12:(0.40 - x):0.48 (0 ≤ x ≤ 0.8). Starting composition limitations are caused by the low solubility of strontium ions in the minimal amount of water used and the acceleration of hydrolysis as well as polycondensation at higher water content. © 2009 Springer Science+Business Media, LLC.

Department(s)

Chemical and Biochemical Engineering

Comments

Nagoya University, Grant None

International Standard Serial Number (ISSN)

0957-4530

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Nov 2009

PubMed ID

19507007

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 5
  • Usage
    • Downloads: 47
  • Captures
    • Readers: 21
see details

Share

 
COinS
 
 
 
BESbswy