Abstract

Microwave sintering is traditionally employed to reduce the sintering temperature required to densify powder compacts. The effect of microwave heating on hydroxyapatite (HA)-zirconia (ZrO2) green bodies has been investigated in order to understand how microwave energy may affect the physical and mechanical properties of the resultant densified composites. Laboratory synthesised nano-sized HA and a commercial nano-sized ZrO2 powder have been ball milled to create mixtures containing 0-5 wt% ZrO2 loadings. Compacts were microwave sintered at either 700, 1000 or 1200°C with a 1 h hold time. Comparative firings were also performed in a resistive element furnace using the same heating profile in order to assess the differences between conventional and microwave heating on the physical, mechanical and microstructural properties of the composites. Samples sintered at 700°C show little sign of densification with open porosities of approximately 50%. Composites conventionally sintered at 1000°C were between 65 and 75% dense, whereas the samples microwave sintered at this temperature were between 55 and 65% dense. Samples sintered at 1200°C showed the greatest degree of densification (>80%) with a corresponding reduction in open porosities. TCP generation occurred as a consequence of sintering at 1200°C, even with 0 wt% ZrO2, and increased degradation of the HA phase to form significant amounts of TCP occurred with increasing additions of ZrO2, along with increasing open porosity. Nanosized ZrO2 prevents the densification of the HA matrix by effectively pinning grain boundaries and this effect is more pronounced in the MS materials. Similar strengths are achieved between the microwave and conventionally sintered samples. Greater amount of open porosity and pore interconnectivity are seen in the MS samples, which are considered to be useful for biomedical applications as they can promote osteo-integration. © 2009 Springer Science+Business Media, LLC.

Department(s)

Chemical and Biochemical Engineering

International Standard Serial Number (ISSN)

0957-4530

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Apr 2010

PubMed ID

20037773

Share

 
COinS