Abstract

Many commercial bone grafts cannot regenerate healthy bone in place of diseased bone. Bioactive glasses have received much attention in this regard due to the ability of their ionic dissolution products to promote cell proliferation, cell differentiation and activate gene expression. Through the incorporation of certain ions, bioactive glasses can become therapeutic for specific pathological situations. Calcium-strontium-sodium-zinc-silicate glass bone grafts have been shown to release therapeutic levels of zinc and strontium, however the in vitro compatibility of these materials is yet to be reported. In this study, the in vitro cytocompatibility of three different calcium-strontium-sodium-zinc-silicate glasses was examined as a function of their ion release profiles, using Novabone® bioglass as a commercial comparison. Experimental compositions were shown to release Si4+ ranging from 1 to 81 ppm over 30 days; comparable or enhanced release in comparison to Novabone. The maximum Ca2+ release detected for experimental compositions was 9.1 ppm, below that reported to stimulate osteoblasts. Sr2+ release was within known therapeutic ranges, and Zn2+ release ranged from 0.5 to 1.4 ppm, below reported cytotoxic levels. All examined glass compositions show equivalent or enhanced in vitro compatibility in comparison to Novabone. Cells exposed to BT112 ionic products showed enhanced cell viabilities indicating cell proliferation was induced. The ion release profiles suggest this effect was due to a synergistic interaction between certain combinations and concentrations of ions. Overall, results indicate that the calcium-strontium-sodium-zinc-silicate glass compositions show equivalent or even enhanced in vitro compatibility compared to Novabone®. © 2010 Springer Science+Business Media, LLC.

Department(s)

Chemical and Biochemical Engineering

International Standard Serial Number (ISSN)

0957-4530

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Oct 2010

PubMed ID

20711638

Share

 
COinS