Abstract

Bioactive glass particles (0.42SiO2-0.15CaO-0.23Na 2O-0.20ZnO) of varying size (<90 >μm and 425-850 μm) were synthesized and coated with silver (Ag) to produce Ag coated particles (PAg). These were compared against the uncoated analogous particles (Pcon.). Surface area analysis determined that Ag coating of the glass particles resulted in increased the surface area from 2.90 to 9.12 m2/g (90 μm) and 1.09-7.71 m2/g (425-850 μm). Scanning electron microscopy determined that the Ag coating remained at the surface and there was little diffusion through the bulk. Antibacterial (Escherichia coli - 13 mm and Staphylococcus epidermidis - 12 mm) and antifungal testing (Candida albicans - 7.7 mm) determined that small Ag-coated glass particles exhibited the largest inhibition zones compared to uncoated particles. pH analysis determined an overall higher pH consider in the smaller particles, where after 24 h the large uncoated and Ag coated particles were 8.27 and 8.74 respectively, while the smaller uncoated and Ag coated particles attained pH values of 9.63 and 9.35 respectively. © Springer Science+Business Media, LLC 2012.

Department(s)

Chemical and Biochemical Engineering

International Standard Serial Number (ISSN)

1573-4838; 0957-4530

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 May 2012

PubMed ID

22426653

Share

 
COinS