Abstract
This work considers a glass polyalkenoate cement (GPC)-based carrier for the effective delivery of bone morphogenetic proteins (BMPs) at an implantation site. A 0.12 CaO–0.04 SrO–0.36 ZnO–0.48 SiO2 based glass and poly(acrylic acid) (PAA, Mw 213,000) were employed for the fabrication of the GPC. The media used for the water source in the GPC reaction was altered to produce a series of GPCs. The GPC liquid media was either 100 % distilled water with additions of albumin at 0, 2, 5 and 8 wt% of the glass content, 100 % formulation buffer (IFB), and 100 % BMP (150 µg rhBMP-2/ml IFB). Rheological properties, compressive strength, ion release profiles and BMP release were evaluated. Working times (Tw) of the formulated GPCs significantly increased with the addition of 2 % albumin and remained constant with further increases in albumin content or IFB solutions. Setting time (Ts) experienced an increase with 2 and 5 % albumin content, but a decrease with 8 % albumin. Changing the liquid source to IFB containing 5 % albumin had no significant effect on Ts compared to the 8 % albumin-containing BT101. Replacing the albumin with IFB/BMP-2 did not significantly affect Tw. However, Ts increased for the BT101_BMP-2 containing GPCs, compared to all other samples. The compressive strength evaluated 1 day post cement mixing was not affected significantly by the incorporation of BMPs, but the ion release did increase from the cements, particularly for Zn and Sr. The GPCs released BMP after the first day, which decreased in content during the following 6 days. This study has proven that BMPs can be immobilized into GPCs and may result in novel materials for clinical applications.
Recommended Citation
A. M. Alhalawani and O. Rodriguez and D. J. Curran and R. Co and S. Kieran and S. Arshad and T. J. Keenan and A. W. Wren and G. Crasto and S. A. Peel and M. R. Towler, "A Glass Polyalkenoate Cement Carrier for Bone Morphogenetic Proteins," Journal of Materials Science: Materials in Medicine, vol. 26, no. 3, Springer, Mar 2015.
The definitive version is available at https://doi.org/10.1007/s10856-015-5494-3
Department(s)
Chemical and Biochemical Engineering
International Standard Serial Number (ISSN)
1573-4838; 0957-4530
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Mar 2015
PubMed ID
25773232
Included in
Biochemical and Biomolecular Engineering Commons, Biomedical Devices and Instrumentation Commons