Abstract
A bioactive glass (BG) in which Ga was substituted for Zn was formulated to investigate whether the ionic form of Ga can elicit effects similar to gallium nitrate. The ion release and pH of BG extracts were evaluated, as well as the in vitro cytocompatibility of extracts in contact with mouse fibroblasts and human osteoblasts. After incubation times of 1 year, the glass (TGa-1) containing the smaller Ga-addition (8 mol%) released the most sodium (Na) (1420 mg/L), silicon (Si) (221 mg/L), and Ga (1295 mg/L), while the glass (TGa-2) containing the larger Ga-addition (16 mol%), exhibited release levels between TGa-1, and the 0 mol% Ga (Control) glass. The pH of all 3 glass extracts steadily increased over time, with maximums observed after 365 days for Control (10.0), TGa-1 (12.2), and TGa-2 (9.7). Cell viability analysis suggested that Ga-release produced toxic effects in L-929 fibroblasts, with less than 3 % viability for both TGa-1 and TGa-2 extracts after 90, 180, and 365 days; however, no significant decrease in MC-3T3 osteoblast viability was observed for TGa-1 extracts after any time period, despite the higher ion release and pH values, and a significant decrease to 51 % viability was only observed for TGa-2 extracts after 365 days. These results suggest that tailoring the release of Ga from BG is not only possible, but also beneficial to the host, thus rendering such glasses useful in bone void-filling applications.
Recommended Citation
T. J. Keenan et al., "Relating Ion Release and PH to in Vitro Cell Viability for Gallium-Inclusive Bioactive Glasses," Journal of Materials Science, vol. 51, no. 2, pp. 1107 - 1120, Springer, Jan 2016.
The definitive version is available at https://doi.org/10.1007/s10853-015-9442-x
Department(s)
Chemical and Biochemical Engineering
International Standard Serial Number (ISSN)
1573-4803; 0022-2461
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 Springer, All rights reserved.
Publication Date
01 Jan 2016
Included in
Biochemical and Biomolecular Engineering Commons, Biomedical Devices and Instrumentation Commons