Novel Adhesives for Distal Radius Fixation: A Biomechanical Analysis


Wrist fractures can be difficult to treat due to advanced age of the patient, medical co-morbidities, and comminution of the bone. This study examines the effectiveness of two injectable glass polyalkenoate cements (GPCs), derived from two different glasses (A and B), as minimally invasive treatments for distal radius fractures. Twenty-seven fresh cadaveric radial pairs were tested either in compressive fatigue or to quasi-static compressive failure. The radii tested to failure had one pair fixated with a GPC while the other was left intact. The radii tested under fatigue had one pair fixated with a GPC and the other with a volar locking plate. A wedge osteotomy was used to simulate a severely comminuted fracture. When loaded to failure, the radii fixated with a GPC made from glass A or B were found to be, respectively, at least 57% and 62% as strong as their intact biological pair (95% Confidence Interval, Lower). Using a paired t-test, the radii fixated with either adhesive were found to be significantly stiffer than their biological pairs fixated with a volar locking plate for all cycles of fatigue loading. The adhesives under investigation demonstrate promise as treatment for distal radius fractures. In vivo investigations are warranted to determine the effect that the adhesives have on the bone remodelling process.


Chemical and Biochemical Engineering


Canadian Institutes of Health Research, Grant 356780-DAN

International Standard Serial Number (ISSN)

1878-0180; 1751-6161

Document Type

Article - Journal

Document Version


File Type





© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 2019

PubMed ID