Abstract

Glass polyalkenoate cements (GPCs) are under investigation as potential bone adhesives, as they may provide an alternative to polymethylmethacrylate-based cements. GPCs containing strontium (Sr) and zinc (Zn) in place of aluminum (Al) are of particular interest because these ions are known stimulators of osteoprogenitor differentiation. GPCs have been manufactured from a novel bioactive glass (SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) in the past, but, while such materials have been assessed for their influence on viability, their influence on osteogenic function has not been investigated until now. For this study, two GPCs were formulated from the same glass precursor evaluated in previous studies. These GPCs were named GPC A and GPC B, and they differed in glass particle size, polyacrylic acid molecular weight, and their powder: liquid ratios. The effect of these two GPCs on osteogenic differentiation of primary rat osteoblasts were evaluated using three culture systems: culture with dissolution extracts, indirect contact with trans well-inserts and direct contact. Additionally, the degradation characteristics of GPCs were assessed, including their interfacial pH and surrounding pH. The experimental outcomes revealed that collagen deposition, alkaline phosphatase expression, and mineralization were largely dependent on GPC composition as well as the mode of interaction with cells. These markers were found to be significantly elevated in response to GPC A's dissolution products. However, osteogenic differentiation was inhibited when osteoblasts were cultured indirectly and directly with GPCs, with, overall, GPC B significantly outperforming GPC A. These results suggest that GPC degradation products effect osteogenic differentiation in a dose-dependent manner.

Department(s)

Chemical and Biochemical Engineering

Comments

Canadian Institutes of Health Research, Grant 399463

International Standard Serial Number (ISSN)

1552-4965; 1549-3296

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 Wiley, All rights reserved.

Publication Date

01 Aug 2021

PubMed ID

33125181

Share

 
COinS