Zirconium oxide (ZrO2) was deposited onto Ni/Al2O3 catalyst as overcoating by atomic layer deposition (ALD) for dry reforming of methane (DRM). High-temperature heating during H2-reduction could transform the ALD-prepared ZrO2 thin film to tetragonal phase and crack the encapsulating layer on Ni sites, which constructed a beneficial Ni-ZrOx interface. Interfacial surface oxygen vacancies on ZrO2 overcoating were induced by the partial reduction of ZrO2 surface during high-temperature H2 reduction, with the assistance of Ni. During DRM, the interfacial oxygen vacancies enhanced CO2 activation by dissociating CO2 and releasing active O, thereby limiting carbon formation. For DRM at 700 °C and 800 °C, Ni/Al2O3 with 5 cycles of ZrO2 ALD overcoating enhanced both activity and stability significantly. For a 100-h DRM test at 600 °C, no deactivation was observed for the Ni/Al2O3 catalyst with 10 cycles of ZrO2 ALD overcoating, as compared to 59% relative activity loss of Ni/Al2O3.


Chemical and Biochemical Engineering


U.S. Department of Energy, Grant DE-FE0029760

Keywords and Phrases

Atomic layer deposition (ALD); Dry reforming of methane (DRM); Metal-oxide interface; Oxygen vacancy; ZrO overcoating 2

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2023 Elsevier, All rights reserved.

Publication Date

15 May 2022