Abstract

Highly dispersed nickel (Ni) nanoparticles (NPs) with an average particle size of 4.3 nm were uniformly deposited on the outer surface, the inner channel surface, and inside the pores of 20 cm long four-channel α-Al2O3hollow fibers (HFs) by atomic layer deposition (ALD) for dry reforming of methane (DRM). Cerium oxide (CeO2) was added to promote the catalytic performance of Ni/Al2O3-HF catalysts. Rationally designed filling methods, by tuning the reactor size and inert fillings, can reduce the catalyst bed voidage in a fixed bed reactor for better reactant gas distribution, effectively utilize the Ni reactive sites, and achieve excellent catalytic performance. It was found that the CeO2-promoted Ni/Al2O3-HF catalyst was highly active and highly stable without deactivation during an overall 400-h DRM test at 850 °C. CeO2with reversible valence states could participate in surface reactions; especially, the formation of CeAlO3provided sufficient surface Ce3+for CO2activation and enhanced the stability and reusability of the HF catalysts.

Department(s)

Chemical and Biochemical Engineering

Comments

U.S. Department of Energy, Grant DE-FE0029760

International Standard Serial Number (ISSN)

1520-5045; 0888-5885

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Chemical Society, All rights reserved.

Publication Date

27 Jul 2022

Share

 
COinS