Abstract
Ultrathin film coatings on battery materials via atomic layer deposition (ALD) have been demonstrated as an efficient technology for battery performance enhancement. However, the fundamental understanding on lithium intercalation into active materials through the interface between the coating and active materials is unclear, which makes it difficult to optimize ALD coating strategies. Further, like most active materials, a coating layer can undergo volume change during the intercalation process, which can produce detrimental structural changes and mechanical failure of the layer. In this work, first-principles calculations are conducted to reveal the behavior of a coating layer on an active material particle by focusing on the intercalation energy variation, lithium-ion transport, electron chemical potential change, and structural changes of the coating layer. The analysis comprehensively explains an experimental observation that a CeO2 coating on LiMn2O4 particles exhibits better performance in capacity and cycling than an Al2O3 coating on the same particles. The fundamental knowledge imparted from this work provides an important understanding about the beneficial role of ALD coatings in lithium-ion battery performance and capacity retention.
Recommended Citation
Y. He et al., "Impact of Ultrathin Coating Layer on Lithium-Ion Intercalation into Particles for Lithium-Ion Batteries," Chemical Engineering Journal, vol. 440, article no. 135565, Elsevier, Jul 2022.
The definitive version is available at https://doi.org/10.1016/j.cej.2022.135565
Department(s)
Chemical and Biochemical Engineering
Second Department
Mechanical and Aerospace Engineering
Keywords and Phrases
Atomic layer deposition; Coating volume expansion; Li-ion diffusivity; Li-ion intercalation
International Standard Serial Number (ISSN)
1385-8947
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
15 Jul 2022
Included in
Aerospace Engineering Commons, Biochemical and Biomolecular Engineering Commons, Mechanical Engineering Commons
Comments
National Science Foundation, Grant CBET 1510085