Abstract

The rapid proliferation of electronic cigarettes (ECs) has raised significant concerns about their potential health effects on both users and bystanders. This study systematically investigates the impact of EC aerosol exposure on human alveolar epithelial cells (A549), considering variations in device parameters, nicotine concentration, and exposure type. Using a gravity-based air–liquid interface exposure system, we assessed cytotoxicity and epithelial barrier integrity by measuring cell viability and transepithelial electrical resistance (TEER). Our results indicate that EC aerosol exposure significantly reduces cell viability and disrupts monolayer integrity in a dose- and device-dependent manner. Notably, VUSE (pod-type) exposure led to a 16% decrease in viability and a 41% reduction in TEER, while VOOPOO (mod-type) exposure caused a 25% viability loss and a 61% reduction in TEER. Power settings played a critical role: at 60 W, cell viability dropped by 48% at 12 mg/mL nicotine concentration compared to 29% at 0 mg/mL. Moreover, under the same number of puffs (30 puffs), firsthand exposure resulted in a 73% viability decrease, whereas secondhand exposure showed a 47% reduction, indicating substantial bystander risks associated with EC usage. These findings underscore the importance of device specifications and exposure conditions in determining EC aerosol toxicity. The observed epithelial barrier disruption suggests increased vulnerability to respiratory diseases. Given the comparable toxicity of firsthand and secondhand aerosols, regulatory measures should extend beyond direct users to include bystander protection. This study highlights the urgent need for comprehensive toxicity assessments to inform public health policies on EC use.

Department(s)

Biological Sciences

Comments

National Chengchi University, Grant 2324142

International Standard Serial Number (ISSN)

1520-5010; 0893-228X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 American Chemical Society, All rights reserved.

Publication Date

18 Aug 2025

PubMed ID

40771151

Included in

Biology Commons

Share

 
COinS