Abstract

Pairs of species that exhibit broadly overlapping distributions, and multiple geographically isolated contact zones, provide opportunities to investigate the mechanisms of reproductive isolation. Such naturally replicated systems have demonstrated that hybridization rates can vary substantially among populations, raising important questions about the genetic basis of reproductive isolation. The topminnows, Fundulus notatus and F. olivaceus, are reciprocally monophyletic, and co-occur in drainages throughout much of the central and southern United States. Hybridization rates vary substantially among populations in isolated drainage systems. We employed genome-wide sampling to investigate geographic variation in hybridization, and to assess the possible importance of chromosome fusions to reproductive isolation among nine separate contact zones. The species differ by chromosomal rearrangements resulting from Robertsonian (Rb) fusions, so we hypothesized that Rb fusion chromosomes would serve as reproductive barriers, exhibiting steeper genomic clines than the rest of the genome. We observed variation in hybridization dynamics among drainages that ranged from nearly random mating to complete absence of hybridization. Contrary to predictions, our use of genomic cline analyses on mapped species-diagnostic SNP markers did not indicate consistent patterns of variable introgression across linkage groups, or an association between Rb fusions and genomic clines that would be indicative of reproductive isolation. We did observe a relationship between hybridization rates and population phylogeography, with the lowest rates of hybridization tending to be found in populations inferred to have had the longest histories of drainage sympatry. Our results, combined with previous studies of contact zones between the species, support population history as an important factor in explaining variation in hybridization rates.

Department(s)

Biological Sciences

Publication Status

Open Access

Comments

National Science Foundation, Grant DEB‐1556778

Keywords and Phrases

Fundulus; genomic cline; hybridization; introgression; phylogeography; reproductive isolation; Robertsonian fusion

International Standard Serial Number (ISSN)

2045-7758

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Aug 2023

Included in

Biology Commons

Share

 
COinS