Abstract
Human activities such as trade and transport have increased considerably in the last decades, greatly facilitating the introduction and spread of non-native species at a global level. In the Iberian Peninsula, Fundulus heteroclitus, a small euryhaline coastal fish with short dispersal, was found for the first time in the mid-1970s. Since then, F. heteroclitus has undergone range expansions, colonizing the southern region of Portugal, southwestern coast of Spain and the Ebro Delta in the Mediterranean Sea. Cytochrome b sequences were used to elucidate the species invasion pathway in Iberia. Three Iberian locations (Faro, Cádiz and Ebro Delta) and 13 other locations along the native range of F. heteroclitus in North America were sampled. Results revealed a single haplotype, common to all invasive populations, which can be traced to the northern region of the species' native range. We posit that the origin of the founder individuals is between New York and Nova Scotia. Additionally, the lack of genetic structure within Iberia is consistent with a recent invasion scenario and a strong founder effect. We suggest the most probable introduction vector is associated with the aquarium trade. We further discuss the hypothesis of a second human-mediated introduction responsible for the establishment of individuals in the Ebro Delta supported by the absence of adequate muddy habitats linking Cádiz and the Ebro Delta. Although the species has a high tolerance to salinity and temperature, ecological niche modelling indicates that benthic habitat constraints prevent along-shore colonisation suggesting that such expansions would need to be aided by human release.
Recommended Citation
T. Morim et al., "Invasion Genetics of the Mummichog (Fundulus Heteroclitus): Recent Anthropogenic Introduction in Iberia," PeerJ, vol. 2019, no. 2, PeerJ Inc., Feb 2019.
The definitive version is available at https://doi.org/10.7717/peerj.6155
Department(s)
Biological Sciences
Keywords and Phrases
Cytochrome b; Introduction vector; Invasive species; Mitochondrial DNA
International Standard Serial Number (ISSN)
2167-8359
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 Morim et al., All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Feb 2019