Towards a General Life-History Model of the Superorganism: Predicting the Survival, Growth and Reproduction of Ant Societies
Abstract
Social insect societies dominate many terrestrial ecosystems across the planet. Colony members cooperate to capture and use resources to maximize survival and reproduction. Yet, when compared with solitary organisms, we understand relatively little about the factors responsible for differences in the rates of survival, growth and reproduction among colonies. To explain these differences, we present a mathematical model that predicts these three rates for ant colonies based on the body sizes and metabolic rates of colony members. Specifically, the model predicts that smaller colonies tend to use more energy per gram of biomass, live faster and die younger. Model predictions are supported with data from whole colonies for a diversity of species, with much of the variation in colony-level life history explained based on physiological traits of individual ants. The theory and data presented here provide a first step towards a more general theory of colony life history that applies across species and environments.
Recommended Citation
J. Z. Shik et al., "Towards a General Life-History Model of the Superorganism: Predicting the Survival, Growth and Reproduction of Ant Societies," Biology Letters, vol. 8, no. 6, pp. 1059 - 1062, Royal Society, Dec 2012.
The definitive version is available at https://doi.org/10.1098/rsbl.2012.0463
Department(s)
Biological Sciences
Keywords and Phrases
Ant Colony; Life History; Metabolic Scaling
International Standard Serial Number (ISSN)
1744-9561;1744-957X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2012 Royal Society, All rights reserved.
Publication Date
01 Dec 2012
PubMed ID
22896271