A General Model for Ontogenetic Growth under Food Restriction

Abstract

Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counterintuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR.

Department(s)

Biological Sciences

Keywords and Phrases

Energy Allocation; Food Restriction; Growth; Metabolism

International Standard Serial Number (ISSN)

0962-8452;1471-2954

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2011 Royal Society, All rights reserved.

Publication Date

01 Oct 2011

Share

 
COinS