Abstract
Understanding the ecology and evolution of insect societies requires greater knowledge of how sociality affects the performance of whole colonies. Metabolic scaling theory, based largely on the body mass scaling of metabolic rate, has successfully predicted many aspects of the physiology and life history of individual (or unitary) organisms. Here we show, using a diverse set of social insect species, that this same theory predicts the size dependence of basic features of the physiology (i.e., metabolic rate, reproductive allocation) and life history (i.e., survival, growth, and reproduction) of whole colonies. The similarity in the size dependence of these features in unitary organisms and whole colonies points to commonalities in functional organization. Thus, it raises an important question of how such evolutionary convergence could arise through the process of natural selection.
Recommended Citation
C. Hou et al., "Energetic Basis of Colonial Living in Social Insects," Proceedings of the National Academy of Sciences, vol. 107, no. 8, pp. 3634 - 3638, National Academy of Sciences, Feb 2010.
The definitive version is available at https://doi.org/10.1073/pnas.0908071107
Department(s)
Biological Sciences
Keywords and Phrases
Allometry; Colony; Metabolic Theory Of Ecology; Metabolism; Scaling
International Standard Serial Number (ISSN)
0027-8424;1091-6490
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2010 Hou et al., All rights reserved.
Publication Date
01 Feb 2010
PubMed ID
20133582