Abstract

Alternative voltage control strategies for current-regulated PWM inverters are analyzed, including previously established feedforward and feedforward/feedback controllers and a newly proposed decoupling feedback control strategy. The steady-state and dynamic characteristics of each of these control methods are illustrated and compared for a selected inverter design. It is shown that the feedforward controller exhibits steady-state error and an undesirable overshoot of the output voltages during startup. The addition of a feedback loop eliminates the steady-state error and reduces the overshoot; however, the natural response is underdamped regardless of the choice of feedback gains. A decoupling feedback control strategy that eliminates the disadvantages of the feedforward and feedforward/feedback controllers is described. Using the decoupling feedback controller, it is possible to eliminate the steady-state error and place the closed-loop poles wherever desired. Moreover, if the closed-loop poles are selected appropriately, it is possible to eliminate the overshoot of the output voltages during startup transients. © 1996 IEEE.

Department(s)

Electrical and Computer Engineering

Comments

Naval Surface Warfare Center, Grant None

International Standard Serial Number (ISSN)

0885-8993

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Dec 1996

Share

 
COinS