Thermal profile of varying depths of Ozark leaf litter
Department
Biological Sciences
Major
Biological Sciences
Research Advisor
Verble, Robin M.
Advisor's Department
Biological Sciences
Funding Source
Biological Sciences
Abstract
We examined the thermal environment of oak-hickory leaf litter at varying depths in the Mill Creek Watershed to better understand the regulation of the structure, diversity, and composition of soil surface-active arthropod communities. We predicted that deep leaf litter would result in cooler, more insulated soil surface temperatures then shallow leaf litter. Leaf litter depth was measured among 100 0.25 m2 quadrats, and we selected plots that represented the median, 10th and 90th percentiles of that range. iButton data loggers were placed on the soil surface of each plot, and left in place for five days, taking temperature recordings hourly on a 24-hour cycle. We plotted our data against ambient temperatures as recorded by an iButton data logger placed on bare soil. Data suggest that thermal environments differ among sites, but this relationship is likely influenced by other environmental factors.
Biography
Justin Hinson is a junior majoring in Biological Sciences at Missouri S&T. He has been involved with Dr. Verble's Fire Ecology lab since the Spring 2019 semester, and intends to continue working under her. Following the completion of his B.S. in Biological Science, Justin intends to pursue a Master's degree in Ecology.
Research Category
Sciences
Presentation Type
Poster Presentation
Document Type
Poster
Location
Upper Atrium
Presentation Date
16 Apr 2019, 9:00 am - 3:00 pm
Thermal profile of varying depths of Ozark leaf litter
Upper Atrium
We examined the thermal environment of oak-hickory leaf litter at varying depths in the Mill Creek Watershed to better understand the regulation of the structure, diversity, and composition of soil surface-active arthropod communities. We predicted that deep leaf litter would result in cooler, more insulated soil surface temperatures then shallow leaf litter. Leaf litter depth was measured among 100 0.25 m2 quadrats, and we selected plots that represented the median, 10th and 90th percentiles of that range. iButton data loggers were placed on the soil surface of each plot, and left in place for five days, taking temperature recordings hourly on a 24-hour cycle. We plotted our data against ambient temperatures as recorded by an iButton data logger placed on bare soil. Data suggest that thermal environments differ among sites, but this relationship is likely influenced by other environmental factors.
Comments
Joint project with Lillian Germeroth and Brittan McLaughlin