We lay out a unified formalism for the description of radiative electron capture into excited states of heavy, few-electron ions and their subsequent decay, including a full account of many-electron effects and higher-order multipoles of the radiation field. In particular, the density-matrix theory is applied to explore the magnetic sublevel population of the residual ions, as described in terms of alignment parameters. For the electron capture into the initially hydrogenlike U91+ and lithiumlike U89+ uranium projectiles, the alignment parameters are calculated, within the multiconfiguration Dirac-Fock approach, as a function of the collision energy and for different ionic states. From these calculations, we find that the many-electron interactions may result in a small enhancement of the alignment, and that this effect becomes more pronounced for highly excited levels.



Keywords and Phrases

Excited Ionic States; Multiconfiguration Dirac-Fock Approach; Radiative Electron Capture; Uranium Projectiles; Electron Density Measurement; Electrons; Negative Ions; Positive Ions; Radiation; Energy Levels

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2006 American Physical Society (APS), All rights reserved.

Publication Date

01 Mar 2006

Included in

Physics Commons