Transmission of Topological Surface States through Surface Barriers


Topological surface states are a class of novel electronic states that are of potential interest in quantum computing or spintronic applications 1-7. Unlike conventional two-dimensional electron states, these surface states are expected to be immune to localization and to overcome barriers caused by material imperfection8-14. Previous experiments have demonstrated that topological surface states do not backscatter between equal and opposite momentum states, owing to their chiral spin texture 15-18. However, so far there is no evidence that these states in fact transmit through naturally occurring surface defects. Herewe use a scanning tunnelling microscope to measure the transmission and reflection probabilities of topological surface states of antimony through naturally occurring crystalline steps separating atomic terraces. In contrast to nontopological surface states of common metals (copper, silver and gold)19-23, which are either reflected or absorbed by atomic steps, we show that topological surface states of antimony penetrate such barriers with high probability. This demonstration of the extended nature of antimonys topological surface states suggests that such states may be useful for high current transmission even in the presence of atomic-scale irregularities-an electronic feature sought to efficiently interconnect nanoscale devices.



Keywords and Phrases

Antimony; Copper; Gold; Silver; Electrodynamics; Electron; Electronic Equipment; Nanotechnology; Quantum Mechanics; Topology; Crystal Structure; Energy; Microscopy; Molecular Electronics; Probability; Surface Property

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2010 Nature Publishing Group, All rights reserved.

Publication Date

01 Jul 2010