Abstract

Recently, three-dimensional imaging of the ejected electrons following 100  MeV/amu C6+ single ionization of helium led to the observation of a new structure not predicted by theory [M. Schulz et al., Nature (London) 422, 48 (2003)]. Instead of the usual “recoil lobe” centered on the momentum-transfer axis, a ring-shaped structure centered on the beam axis was observed. New measurements at 2  MeV/amu exhibit a similar structure, which is now predicted by theory. We argue that the same theory failed at 100  MeV/amu because the faster projectiles probe distances much closer to the nucleus, where our multiple-scattering model is expected to break down.

Department(s)

Physics

Keywords and Phrases

Approximation theory; Electrons; Functions; Heavy ions; Ionization; Matrix algebra; Quantum theory; Electron impact ionization; First Born approximation (FBA); Atomic physics

International Standard Serial Number (ISSN)

0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2003 American Physical Society (APS), All rights reserved.

Publication Date

01 Dec 2003

Included in

Physics Commons

Share

 
COinS