We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short-range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.




University of Missouri Research Board

Keywords and Phrases

Ising model; Monte Carlo method; Phase transformations (Statistical physics)

Document Type

Article - Journal

Document Version

Final Version

File Type





© 2004 American Physical Society (APS), All rights reserved.

Publication Date

01 Jan 2004

Included in

Physics Commons