Abstract

In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/Al0.3Ga0.7As quantum well. We calculate the dispersions of intersubband spin plasmons using linear-response theory. the so-called D'yakonov-Perel' decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a threefold, anisotropic splitting of the spin plasmon dispersion. the importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed. © 2003 the American Physical Society.

Department(s)

Physics

International Standard Serial Number (ISSN)

1550-235X; 1098-0121

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Physical Society, All rights reserved.

Publication Date

09 Dec 2003

Included in

Physics Commons

Share

 
COinS