Abstract
We develop a strong-disorder renormalization group to study quantum phase transitions with continuous O(N) symmetry order parameters under the influence of both quenched disorder and dissipation. For Ohmic dissipation, as realized in Hertz's theory of the itinerant antiferromagnetic transition or in the superconductor-metal transition in nanowires, we find the transition to be governed by an exotic infinite-randomness fixed point in the same universality class as the (dissipationless) random transverse-field Ising model. We determine the critical behavior and calculate key observables at the transition and in the associated quantum Griffiths phase. We also briefly discuss the cases of super-Ohmic and sub-Ohmic dissipations.
Recommended Citation
T. Vojta et al., "Infinite-Randomness Quantum Critical Points Induced by Dissipation," Physical Review B, American Physical Society (APS), Jan 2009.
The definitive version is available at https://doi.org/10.1103/PhysRevB.79.024401
Department(s)
Physics
Sponsor(s)
National Science Foundation (U.S.)
Research Corporation
University of Missouri Research Board
Keywords and Phrases
Critical Points; Ferromagnetic-Antiferromagnetic Transitions; Renormalisation; Renormalization; Superconducting Transitions; Symmetry
International Standard Serial Number (ISSN)
2469-9950
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2009 American Physical Society (APS), All rights reserved.
Publication Date
01 Jan 2009