Utilizing Twin Interfaces to Reduce Lattice Thermal Conductivity of Superlattice

Abstract

Twin interfaces are easily formed in superlattices due to their lower interfacial energy. However, there are relatively few studies on their effect on the thermal conductivity of superlattices, and the conclusions are unclear. In particular, the degree of influence of the presence of twin interfaces on the thermal conductivity is inconsistent. Therefore, the thermal conductivities of silicon/germanium superlattices with twin interfaces were studied by non-equilibrium molecular dynamics simulations. It was found that the twin interface destroys coherent phonon transport, causes phonon localization, and leads a decrease in the thermal conductivity. The degree of influence of the twin interface on the thermal conductivity is strongly dependent on the period length, the system length, and temperature. Furthermore, phonon density of states, phonon participation rate, and spectral heat flow calculations were employed to deduce the phonon transport mechanisms in superlattices with twin interfaces.

Department(s)

Physics

Comments

National Natural Science Foundation of China, Grant 52076080

Keywords and Phrases

Molecular Dynamic Simulation; Phonons; Si/Ge Superlattice; Thermal Conductivity; Twin Interface

International Standard Serial Number (ISSN)

0017-9310

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2022 Elsevier, All rights reserved.

Publication Date

15 Jun 2022

Share

 
COinS