Single ionization of the methane (CH4) 1t2 orbital by 54 eV electron impact has been studied experimentally and theoretically. The measured triple differential cross sections cover nearly a 4π solid angle for the emission of low energy electrons and a range of projectile scattering angles. Experimental data are compared with theoretical calculations from the distorted wave Born approximation and the molecular three-body distorted wave models. It is found that theory can give a proper description of the main features of experimental cross section only at smaller scattering angles. For larger scattering angles, significant discrepancies between experiment and theory are observed. The importance of the strength of nuclear scattering from the H-nuclei was theoretically tested by reducing the distance between the carbon nuclei and the hydrogen nuclei and improved agreement with experiment was found for both the scattering plane and the perpendicular plane.



Keywords and Phrases

Cross section; Distorted wave Born approximation; Distorted-wave models; Electron impact; Experimental data; Hydrogen nuclei; Low energies; Low energy electrons; Nuclear scattering; Perpendicular-plane; Scattering angles; Scattering plane; Single ionization; Solid angle; Theoretical calculations; Triple differential cross sections; Atomic physics; Impact ionization; Methane; carbon; hydrogen; methane

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2012 American Institute of Physics (AIP), All rights reserved.

Publication Date

01 Jul 2012

Included in

Physics Commons