We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.



Keywords and Phrases

Andreev bound state; Bound state; Focused laser beams; Gap nodes; Low temperatures; Meissner effect; Nodal superconductors; Photoresponses; Radio frequencies; Spiral structures; Surface contribution; Theoretical prediction; Thin-film superconductors; Unconventional superconductors; Anisotropy; Superconductivity; Superconducting films

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2013 American Physical Society (APS), All rights reserved.

Publication Date

01 Feb 2013

Included in

Physics Commons