Visual and Electrical Evidence Supporting a Two-Plasma Mechanism of Vacuum Breakdown Initiation

Abstract

The energy available during vacuum breakdown between copper electrodes at high vacuum was limited using resistors in series with the vacuum gap and arresting diodes. Surviving features observed with SEM in postmortem samples were tentatively correlated with electrical signals captured during breakdown using a Rogowski coil and a high-voltage probe. The visual and electrical evidence is consistent with the qualitative model of vacuum breakdown by unipolar arc formation by Schwirzke [1, 2]. The evidence paints a picture of two plasmas of different composition and scale being created during vacuum breakdown: an initial plasma made of degassed material from the metal surface, ignites a plasma made up of the electrode material.

Department(s)

Nuclear Engineering and Radiation Science

Keywords and Phrases

Breakdown Model; Plasma Material Interactions; Unipolar Arc; Vacuum Breakdown

International Standard Serial Number (ISSN)

0093-3813

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2012

Share

 
COinS