Preparation of Radio-Sm by Neutron Activation for Accelerator Mass Spectrometry


Field measurement of isotopic ratios may be used to fingerprint an element's origin, be it from commercial power, industrial, medical or historical weapons fallout. Samples of samarium radionuclides were prepared by neutron activation for subsequent analysis using accelerator mass spectrometry (AMS). High purity samarium (III) oxide powder was irradiated in the University of Texas at Austin TRIGA reactor to a total neutron fluence of 5 x 1015 cm-2. An initial determination of the isotopic ratios was made using activation calculations with a BURN card in an MCNPX-based model of the TRIGA core. Experimental validation of the MCNP results was achieved by analyzing gamma spectra of the irradiated oxide powers after irradiation. Subsequent measurement of 151Sm will be conducted at the CAMS facility at LLNL demonstrating the first measurement of this isotope at this facility.


Nuclear Engineering and Radiation Science


The authors would like to thank Department of Defense Threat Reduction Agency Grant #HDTRA1-08-1-0032 for support of this work. In addition, the authors appreciate the staff at the Nuclear Engineering Teaching Laboratory at the University of Texas at Austin for operational and experimental support. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Keywords and Phrases

Isotope; Nuclear fuel; Radioisotope; Samarium; Chemical reaction; Conference paper; Electron accelerator; Gamma Spectrometry; Irradiation; Limit of detection; Mass spectrometry; Neutron activation analysis; United States; Validation process; AMS; BURN; Neutron activation; Nuclear forensics; Sm

International Standard Serial Number (ISSN)

0236-5731; 1588-2780

Document Type

Article - Conference proceedings

Document Version


File Type





© 2012 Akademiai Kiado, Budapest, Hungary, All rights reserved.

Publication Date

01 Apr 2013