Abstract

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed flake thickness-dependent THG response. We envisage that our findings in the context of polarization-sensitive light-matter interactions in the exfoliated hydrated sulfosalt layers will be a valuable addition to the vdW layered material family and will have many implications in compact waveplates, on-chip photodetectors, optical sensors and switches, integrated photonic circuits, and nonlinear signal processing applications.

Department(s)

Mechanical and Aerospace Engineering

Comments

The authors acknowledge support from the National Science Foundation under Grant No. ECCS-1653032 and DMR-1552871.

International Standard Serial Number (ISSN)

2045-2322

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2022 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

10 Mar 2022

PubMed ID

35273338

Share

 
COinS