Laser metal deposition with wire feed is one of the additive manufacturing methods with great scope and robustness. Process parameters plays an important role in controlling the process and obtaining an ideal manufactured part. Simulations tools are highly essential in determining the ideal parameters and melt pool conditions. The current work is a transient 3D model of wire feed additive manufacturing which realizes the heat transfer and fluid flow behavior of the process with varying laser power and power density. The model was programmed in Python and a 1 KW Gaussian beam fiber laser was used to conduct experiments. The effect of laser exposure to the scanned and deposited profile on Ti-6Al-4V alloy is obtained. The comparison of simulation and experimental results shows that this model can successfully predict the temperature profile, and solidified metal profile. The optimum input parameters based on material properties can be identified using the model.

Meeting Name

26th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference, SFF 2015 (2015: Aug. 10-12, Austin, TX)


Mechanical and Aerospace Engineering


The authors would like to express their sincere gratitude to the support from National Aeronautics and Space Administration (Grant Number NNX11AI73A) and Laser Aided Manufacturing Laboratory at Missouri University of Science and Technology.

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type




Publication Date

12 Aug 2015

Included in

Manufacturing Commons