Temperature and Emissivity Measurements from Combustion of Pine Wood, Rice Husk and Fir Wood using Flame Emission Spectrum


Biomass combustion for heat and power generation is one of the best ways for substituting fossil fuels. It is necessary to develop in situ temperature and emissivity measurement technology for biomass volatile flame. In this study, combustion experiments on three biomass pellets of pine wood, rice husk and fir wood were carried out in a laboratory biomass burner at two A/F flowrates. A multi-wavelength radiation thermometry method was proposed to calculate temperature and wavelength-dependent emissivity based on Rayleigh approximation. The results showed that the temperature and emissivity of pine wood combustion were higher than those of rice husk and fir wood volatile flames. Though the emissivity of rice husk was less than that of fir wood, the temperature of rice husk combustion was higher than that of fir wood due to the latter's higher moisture content. The temperatures measured by the spectrometer system agreed well with the thermocouple data. The normalized emissivities of the three different biomass show the same trend, indicating the radiative properties of biomass volatile flames do not change with biomass species and combustion conditions.


Mechanical and Aerospace Engineering


This research was supported by the National Key Research and Development Program of China (No. 2017YFB0601900); the National Natural Science Foundation of China (No. 51976057, 51922040 and 51827808) and the Fundamental Research Funds for the Central Universities (No. 2018ZZD08, 2017ZZD005).

Keywords and Phrases

Biomass combustion; Emission spectrum; Emissivity; Temperature measurement; Volatile flame

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2020 Elsevier B.V., All rights reserved.

Publication Date

01 Jul 2020